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Abstract. The long-range behaviour of the orientational fluctuations of a pair distribution 
function is studied. The existence of the instability of an isotropic liquid against formation 
of the state with bond orientational order is shown. The estimates for the instability points 
for a Lennard-Jones liquid are obtained, and a comparison with computer simulation is 
carried out. 

1. Introduction 

The structure of supercooled liquids and glasses is incompletely understood even for the 
simplest systems [I, 21. Frenkel[3] has suggested a qualitative picture of local structure 
of condensed matter. The main assumption is that a dense liquid in small volumes 
represents a crystal-like structure. This concept was used in recent papers [4-91. It was 
argued, however, that real metallic glasses and supercooled liquids are better described 
in terms of ordered but non-crystallineclusters. As pointed out by Frank [ lo], icosahedral 
clusters of 13 particles have a significantly lower energy than more obvious arrangements, 
corresponding to nuclei of FCC and HCP crystals. An icosahedron was used as the main 
structural unit of local order in [ll-131. 

It is natural to enquire whether the regions of local symmetry correlate with each 
other and create long-range orientational order: bond orientational order. Note that the 
‘bond’ is the line joining an atom to its near neighbour. This type of order is well 
known in modern theories of two-dimensional melting (hexatic phase) [14,15]. Three- 
dimensional cubic bond orientational order has been studied theoretically by Nelson 
and Toner [9]. Mitus and Patashinskii [6,7] and Haymet [16] have studied the onset of 
this order on the basis of model Hamiltonians within the mean-field approximation and 
have found a first order phase transition. However, fluctuation effects can make the 
transition continuous [17]. Remler and Haymet [18] extended the study of model 
Hamiltonians to treat orientational ordering in systems with hexagonally close-packed 
symmetry. 

Steinhardt et af [ll] have studied bond orientational order in a computer simulation 
of supercooled Lennard-Jones liquids. On the basis of the calculated correlation in the 
orientation of ‘bonds’ joining near neighbours, they concluded that an increase in 
icosahedral ordering occurs as the liquid is supercooled about 10% below the equilibrium 
melting temperature. In this case, extended orientational correlations appear, with little 
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or no increase in the translational correlation length. The symmetry of the bond-oriented 
state is not perfectly icosahedral, however (see also [19,20]). Haymet [16] has solved a 
simple lattice model of interacting icosahedra and found the first-order orientational 
phase transition within the mean-field approximation. The importance of the study 
of the icosahedral structure in bulk systems is illustrated by the recently discovered 
icosahedral phase [21]. 

In this paper we continue the study of orientational order in condensed phases on 
the basis of the non-linear equations fors-particle distribution functions. In section 2 we 
review the formalism, developed in our previous papers [22-241 for analysing the 
orientational correlations and give some modifications of main equations. In section 3 
we present our results for the Lennard-Jones potential and make the comparison with 
computer simulation. In addition, we propose the phase diagram for the orientationally 
ordered state. A brief discussion of our results is given in section 4. 

2. Main equations 

As may be seen from section 1, our main problem is the investigation of the correlations 
between the directions of 'bonds'. This is equivalent to the problem of the long-range 
behaviour of the orientational fluctuations of the pair distribution function in an isotropic 
liquid [22-241. To solve this problem let us consider the four-particle distribution func- 
tion F4(rl, r 2 ,  r 3 ,  r4) when one pair of particles described by rl and rz is removed from 
another pair described by r3 and r4. The particles in pairs are the nearest neighbours of 
each other. This function gives us the information about the correlations between the 
bonds rl - r2 and r3 - r4. 

We shall write F4 (rl , r 2 ,  r 3 ,  r4) in the following form: 

F4 (ri , r2 7 r3 , r4) = g( /ri - r2 I Ir3 - r4 I + f 4  (ri , r2 7 r3 7 r4)I (1) 
wheref4(rl, r 2 ,  r 3 ,  r4) -+ 0 as R = Ir, - rzl -+ 

tion of the ordinary liquid. 
and g ( r )  is the radial distribution func- 

For an isotropic liquid we have [25] 

f 4 ( r 1 , r 2 , r 3 , r 4 ) = f 4 ( r , R , k , 6 1 , 8 2 , Q , 1 - 4 ) 2 )  (2) 
where r = Irl - r2 / ,  k = Ir3 - r41, R = / r l  - r41, 6, and tYZ are the angles of r and k ,  
respectively, with R ,  and q1-q2 is the angle between planes (r,  R )  and (k ,  R ) .  

The function f4(r, R ,  k ,  61, 8z, q1 - q2) may be expanded in a series in spherical 
harmonics: 

X 'L 

f4(ri k ,  61 , 8 2 ,  ~ 1 -  4 7 2 )  = X X BZ (r,R,k)Y1m(61,q1)Y,.,-m(62, ~ 2 ) .  (3) 
m = - a  1,l'=lml 

The angles Ql = (el, Q, and Q2 = (O1, q2)  determine the directions of the bonds 
rl - r2 and r3 - r4, respectively. Therefore the long-range orientational correlations are 
determined by the behaviour of the functions BZ (Y, R ,  k )  as R-, to. To obtain the 
equation for BC ( r ,  R ,  k )  we shall use the exact non-linear equation for many-particle 
distribution functions [22-241: 
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Here F,+l(rllkl . . . k,) determines the probability of finding a particle at r l  ifs particles 
at points k, are fixed: 

& + l ( ~ l l k l .  . . k ,  )=F,+l(rlrk*,...,k,)/~,(kl,...,k,) (5 ) 

where F,(kl, . . , , ks) is the s-particle distribution function, z is the fugacity, 
&+l(tl . . . rk+l) is the irreducible cluster sum of Mayer functions connecting (at least 
doubly) k +  1 particles, p is the mean number density, p = l / k B T ,  Tis the temperature 
and @ ( r )  is the intermolecular potential. 

Generally z can be obtained from the condition 

L ] F , + l ( t l ~ k l . .  V . k2 )d r l  = 1. 

For an isotropic liquid without external fields we can use the ordinary virial expansion 

Let us consider equation (4) with s = 3.  We shall study correlations in the isotropic 
liquid, where Fl(r) = 1; so we do not regard the breaking of the singlet distribution 
function symmetry corresponding to the freezing transition (see, e.g., [26,27]). 

As was shown in [24,28], we have, for R = Ikl - kZI + 1, 

F3(kl, k2, k3) = d I k 2  -k31)+P-1{(a/ap)[p2g(lk2 -k31)l)h(R) (7)  

where h(R) = g(R) - 1, h(R) + 0 as R + m. 

using (1) and (7), we obtain 
For R S 1 the inequalities h(R) 4 1 andf4(tl, kl  , k 2 ,  k3) < 1 take place. In this case, 

F4(r1,k1,k2,k3)/F3(kl,k2,k3) 

=g(lrl - k l  +f4(rl, k l ,  k2, k3) -y(1k2 -k31)h(R)l (8) 

where 

y( Ik2 - k3 1 )  = [ P d  Ik2 - k3 I )I-’ (a/a P>[P2g( lk2 - k3 1 > I .  
Let us now substitute (8) in (4) with s = 3 and linearise the result with respect to 

f4(rl, kl,  k2, k3) - Y(/k2 - k3/)h(R). Then, taking into account the fact that g(r )  is the 
solution of equation (4) fors = 1, we have the equation: 

f4(rl, kl, k2,  k3) = I r(t17 k l ,  r2)g(lr2 -klI)f4(r2, k l ,  k2, k3) dr2 

The last term in equation (9) does not depend on the directions of the bonds rl - kl 
and k2 - k3 and may be omitted in what follows. 
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The function r(rl, k l ,  k 2 )  has the form 

Owingtotranslationalandrotationalinvariance, r(rl ,kl ,r2)dependsonr = /rl - kl l ,  
r’ = Ir, - kll and 6 (the angle between rand  r ’ )  only: 

The expansion for K ( r ,  r ’ ,  6) takes the form 

where Q, and 52, determine the directions of the vectors rl - k ,  and r2 - kl.  

(ro = r,  - k l ,  dr ,  = dr,), we find that 
Substituting (2) and (12) into (9) (without the last term) and changing the variables 

Here s = r2 - rl ; 6; and 6; are the angles of ro and k ,  respectively, with r2, and 9 [ - 
9; is the angle between the planes (ro,  r2) and ( k ,  r2).  

Inserting (3)  and (12) into (13), we obtain the equations for B;I! ( r ,  R ,  k ) .  The slowly 
varying solutions of these equations can be investigated by a gradient expansion tech- 
nique [22-241. In our case, s 4 R ;  therefore equation (13) can be well approximated by 
its Taylor expansion in powers of s. There are two small parameters, s/R and s d/dR, in 
this expansion, and their relative sizes need not be specified. To obtain exponential 
asymptotic behaviour in R it is necessary to take into account the terms independent of 
1/R. The calculations are tedious but straightforward. In this case a set of equations for 
B;I! ( r ,  R ,  k )  has been derived in our previous paper [24]. However, the symmetry of 
F4(r l ,  r , ,  r3, r 4 )  relative to the rearrangement of particles (1,2) and (3,4) [25] has not 
been taken into account in [24]. To take into consideration this symmetry, we shall 
consider the coordinate system with the z axis along the vector R ,  joining the middles 
of vectors k and r,  respectively. 6: and 19; are the angles of k and r with R o ,  and 
Q,: - Q,; is the angle between planes ( r ,  R , )  and ( k ,  R o ) .  In this coordinate system the 
expansion (3) may be written in the form 
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ThequantitiesRo, I?!, I?: and cpy  - 9: arethefunctionsofR,r,k, 1 9 ~ ,  fi2andcpI - cp2 
and can be expanded in powers of d/dR and 1/R. With necessary accuracy, we find that 

B'l;+l,2n(r, R, k) = -1ir{[(21+2)2 -m2]/(41+3)(41+5)}1/2 

x ~ 3 B z + ~ , ~ ~ ( r , R ,  k)/dR +Iir{[(21+ 1)2 - m2]/(41+ 1)(41+3)}1/2 

X aB1;,2,,(r,R, k)/aR 
(14) 

B$-1,2n(r,R,k)= -1ir[(412 -m2)/(41- 1)(41+1)]1/2 

x 

x aB1;-2.2n(r, R, k)/aR. 

R,  k)/dR + 1 ir{[(2l- 1)2 - m2]/(41- 3)(4l- 1)}'12 

Inserting (14) into equation (18) of [24], we obtain the set of equations for 
B22/,(r,R,k): 

aBZ;,2/,(rO, R, k) j r20 dro g(r0) (a2i.m(r, ro> dR 

X {[(2l+ 1)2 - ~ 1 ~ ] [ ( 2 1 + 2 ) ~  -m2]/(41+ 1)(41+5)}'/2 

x +r[rzl+l ( r ,  r0)r0/(21 + 3) - r2/+2(r, rO)r/(4/ + 511 

x 1 r [ r 2 d r ,  ro)ro/pl- 1) - r21-2(r,rO)r/(41-3)1. 

C21-2,m(r, rg)  = [4n/(4l- 1)]{[(2l- 1)2 - m2](41* - m2)/(41- 3)(4l+ 1)}"2 

As has been shown in [22-241, the line determined with eigenvalues of the equation 

4JG 
q 2 / ,  ( r ,  R,  k) - 4[+1Jr2dr, ro)g(ro)B%2/' (ro ,R ,  k k i  dro = 0 (17) 

can be regarded as the instability criterion of the isotropic liquid against the formation 
of the phase with the bond orientational order. 
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The relative spatial distribution of pairs of particles is characterised by the function 
F2(r1 lkl). We consider the system with unbroken translational symmetry. In this case, 
Fl(kl) = 1 and F2(rlIkl) = F2(rl - kl) .  

For an anisotropic liquid the function F2(rl - k, )  can be written in the form 

F*@l -k1) = g ( h  -k11)[1 +f2(r1 - k1)l 
where the functionf2(rl - k , )  = f 2 (  /rl - kll, Q )  can be expanded in a series of spherical 
harmonics: 

. ; I  

[ = O  m = - l  

Here 52 determines the direction of the vector r = rl - k , .  The functionsfim(r) are the 
order parameters. In terms of the functions fim(r) the instability criterion (17) has the 
form 

3. Approximations and results 

To investigate real systems we must propose some approximations for the quantities 
entering equations (15)-( 17). The simplest possible approximation for the function 
r(rl, k , ,  r2) has been suggested in our previous papers [23,24]. It has the form 

J?l,kl,r*) = d e x p [ - @ ( h  - r2I)l - 1). (19) 
This approximation is exact in the low-density limit. As the density is increased, 

deviations from (19) occur. However, we believe that in the case of the short-range 
potentials with hard cores we can omit all terms in expansion (10) except for the first 
one. Thisis becauseg(Jri - k,/)isequaltozeroinside thehardcoreandSk+l(rl .  . . rk+l )  
is the short-range function. Note that in [23] the leading term of an expansion in 
terms of the direct correlation function was proposed as a possible approximation for 
T(rl, kl ,  r2) but, in our opinion, this approximation does not properly take into account 
the repulsion at short distances. The approximation based on the direct correlation 
function may be satisfactory in the case of the long-range interactions without hard 
cores. We hope that the crude but simple approximation (19) reflects the main features 
of the short-range potentials with hard cores (including the Lennard-Jones potential) 
and can be regarded as the basis for the consideration of the instability in a Lennard- 
Jones liquid. However, looking for more accurate approximations remains an important 
problem. 

Using (19), we can calculate Tr(r ,  ro)  entering (16)-(18). To simplify the set of 
equations (15), we introduce the following approximation for radial distribution function 
g(r>: 

g(r) = a d ( r  - r , )  (20) 
where r, is the position of the first maximum of g(r), and a may be obtained from 

lmin  

a = Jo g(r) dr .  

Here rmi, is the position of the first minimum of g(r). 
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where 

A21.m = arfa2/,m(rs, rs )  C2/,m = dc2/ ,m(rs ,  ~$1. 
The quantity B2,21t ( r , ,  R, r , )  determines correlations between orientations of bonds 

having the length rs. We shall search for the solution of equations (22) in the form 

B2,2/'(rs, R, r s )  = CexP(-R/E2/,m). 

Substituting this expression into (22), we obtain the equation for the correlation 
length E21.m. The smaller K$, the larger is 1321,m. For K$ -e 1 we have 

E i , m  = A2/,m/~22/ (23) 
as + 0, 621,m + E. Equation (18) enables one to consider the condition K~~ = 0 as the 
instability criterion of the isotropic liquid against the formation of the state with bond 
orientational order. 

Let us consider now the behaviour of the correlation length of orientational fluc- 
tuations for the Lennard-Jones potential 

@ ( r )  = 4&[(0/Y)'2 - ( 0 / r ) 6 ] .  

We shall consider the dimensionless quantities T* = kgT/& and p* = u3p. In this 
case the potential can be written in the form 

@ , ( I )  = 4(r-'2 - r -6) .  (24) 
The computer simulation of the system with the potential (24) has been studied by 

Steinhardt et a1 [ l l ] .  They have found that, if the temperature approaches T* = 0.626 
from above, the correlation length of the orientational fluctuations increases sharply. 

The radial distribution function entering (21) for the potential (24) can be obtained 
with satisfactory accuracy from the approximation [29] 

dr) = exp[-p@O(r)l yhs(r/d, 11) (25) 
where 

q = np*d3/6 

Yhs(r/d, 11) = gWT(r/d? 11) - CWT(r/d, 7). 
gWT(r/d, q) and cwT(r/d, 7) are the radial distribution function and the direct correlation 
function for hard spheres, obtained by Wertheim [30] and Thiele [31] for the Percus- 
Yevick approximation. The effective hard-sphere diameter can be obtained using the 
methods developed in [29,32]. 

To compare our results with those obtained by Steinhardt et a1 [ 111, we shall calculate 
E21,m at p* = 0.973. The correlation length E21,m tends to infinity, as K$ +- 0. We tried to 
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Figure 1. Orientational correlation length 
and 5 (---). The graphs are given for p* = 0.973. 

as a function of T * ,  form values of 4 (-) 

solve the equation q1 = 0 for I = 4 , 6 , 8  and 10. It turns out that there is no solution for 
I = 4 and 8. If I = 6, the instability occurs at T” = 0.683; if 1 = 10, the instability takes 
place at T* = 0.402. 

Therefore the long-range correlations appear for the first time for 1 = 6. The long- 
range correlations with 1 = 4 are absent, and there is no cubic bond orientational order 
proposed by Nelson and Toner [9]. This conclusion coincides with the results of computer 
simulation [ l l ] .  The instability temperature T* = 0.683 is in agreement with the result 
T* = 0.626 obtained by Steinhardt et a1 [ll]. 

At 1 = 6, in the correct coordinate system, cubic clusters have non-zero components 
with m = + 0, +-4, icosahedral clusters, with m = 0, 5 5 ,  and hexagonal clusters, with 
m = 0, -+6. It is not difficult to show that g6,m< l$6,m+l. Figure 1 shows the behaviour of 

6,m for m = 4 and m = 5 (p* = 0.973). Note that the correlation function Gl(r), dis- 
cussed in [ l l ] ,  is averaged over m and does not contain the information about the 
fluctuations with definite symmetry. Our correlation function does contain such infor- 
mation. The behaviour of & m  suggests that the orientationally ordered phase has 
elements of cubic, icosahedral and hexagonal symmetry. In our opinion, the instability 
with I = 10 should intensify the icosahedral symmetry. Therefore the mixed symmetry 
of ordered phase is an inherent property of the Lennard-Jones system and cannot be 
exclusively regarded as the result of the influence of the boundary conditions in carrying 
out the computer simulation [ l l ] .  

The expansion (3) shows that there exist correlations with different 1 but equal m. In 
our view, it is these correlations that result in the existence of the elements of symmetry 
with I = 4 and I = 8 in the ordered phase (see figure 4 in [ 111). 

We have attempted to solve the equation K/ = 0 for the hard-sphere system. We have 
not found any solution, but the tendency of increasing correlation length was observed 
for 1 = 6. In [23,24] we applied the other approximation for the functionf2(r): f2(r )  = 

- rs>f(Q 1. 
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In this case the instability in the hard-sphere system does exist at very high densities. 

Finally, let us consider the other possible approximation for the function (10). 
However, the approximations used in this paper seem to be more accurate. 

Changing the variables Ri = r, - kl,  we obtain 

To estimate this quantity, let us divide the potential into two parts, corresponding to the 
attraction and the repulsion [29,32]: 

@ ( r ,  Y) = @ 0 ( 4  + Y A @ ( 4  @ ( r ,  Y = 1) = @LJ (4  
where a0(r) is determined by equation (26) and 

i-1 

We regard A@(r)  as a perturbation and calculate T(Rl, R 2 )  to lowest order in A@(r): 

~ ( R , , R , )  = r o ( ~ 1 , ~ 2 )  + {ar&1 ,~2)a~1 /y=0 .  (28) 
Here T&,, R2) is the function (27) calculated with the potential @ ( r ,  y ) .  In the second 
term of equation (28) we retain only the part that is proportional to A@( Irl - r21). The 
resulting approximation is similar to the ordinary mean spherical approximation. To 
estimate the first and the second terms of equation (28), further approximations are 
necessary. Firstly we replace Q0(r)  with the hard-sphere potential with the effective 
diameter depending on the temperature and density [29,30]. Secondly, we replace pg(r)  
with some mean quantity po. It is not difficult to show that in this case (28) can be 
rewritten in the form 

r (R l ,  R 2 )  = P C h s ( I R l  - R 2  1 )  PO) + pghs(lR1 - R 2  1, pO)[-P 1 - R 2  111 (29) 
where chs( IR1 - R 2 / ,  po) and &([RI - R21, po) are the direct correlation function and 
radial distribution function for the hard-sphere system with density po. 

To determine po we suggest that pg(r)  is averaged over the region of volume 
(4n/3)a3 : 

where g ( r )  can be obtained from equation (25). Unfortunately, we have no efficient 
method of calculating quantity a. We take a equal to 1.565. This value comes from a fit 
of the computer simulation result for the temperature of the transition at p* = 0.973 
[ l l ] .  Using chs(r, po) andghs(r, po) in the Percus-Yevick approximation [30,31], we can 
solve the equation K[ = 0 by determining the instability line. At 1 = 6 and p* = 0.973 we 
have T* = 0.63. This value is equal to the value obtained in the computer simulation 
[ l l ] .  Figure 2 shows the phase diagram for the orientationally ordered state in the p*- 
T* plane, The diagram is calculated using the approximation (29) with the adjustable 
parameter a and shows the border of the instability region for different densities. The 
maximum in the phase diagram corresponds to T* = 1.08, p* = 1.43. Destruction of the 
orientational order can be explained in the following way. Instability is absent in the 
hard-sphere system, and it is the last term in equation (29) that is responsible for the 
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Figure2. Phase diagram in the T*-p* plane for the orientationally orderedphase as obtained 
from the approximation (29). 

instability in the Lennard-Jones system. When the density increases? the significance of 
attraction is decreased, and the ordered state becomes destroyed. 

4. Conclusion 

In this paper the behaviour of the orientational fluctuations of pair distribution function 
has been studied under the condition F,(r) = 1. This condition suggests the absence of 
crystallisation and gives us the possibility of considering supercooled liquids. It was 
shown that with decreasing temperature the correlation length of orientational fluc- 
tuations increases until the phase transition into the state with long-range bond orien- 
tational order takes place. It was suggested that the ordered state contains elements of 
cubic, icosahedral and hexagonal symmetry. Unfortunately, the linearised equations 
studied in this paper do not allow us to obtain full information concerning the symmetry 
of the ordered state. For this purpose it is necessary to find the approximate solution of 
the non-linear equation (4) with s = 1. The values of the instability points obtained in 
this paper for the Lennard-Jones potential are in satisfactory agreement with the results 
of computer simulation [ll]. It would be interesting to verify the phase diagram shown 
in figure 2 by computer simulation. 

The thermodynamically consistent description of the first-order phase transition 
from the isotropic to anisotropic state can in principle be developed by analogy with the 
density functional theories of freezing [26 ,27 ] .  Using equation (4), one can obtain 
the thermodynamic quantities (pressure , free energy and chemical potential) as the 
functionals of the functions F2(rl 1r2) (compare [26 ] ) .  Unfortunately we have no reliable 
approximation that would give us the possibility of deriving the closed set of equations 
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for the transition parameters. The search for such approximations is the subject of 
further investigations. 

It is necessary to note that the anisotropic phase is similar to the icosahedral glass 
[21], but in our approach we cannot consider the dynamic aspects; therefore it is 
impossible to conclude whether the anisotropic phase is a liquid (probably supercooled) 
or a glass. 
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